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On the range of unbounded vector valued measure

by

Czesdaw Olech

Consider a vector valued measure (S,Zbu), that is a space
é, a g-field 2, of subsets of S and a countably additive function
K defined on 2 and taking values from R" if finite or infinity
denoted by «. We assume that w=+a = o, E a; = @ if ”% aiH — o

i=1 i=1
as n — o,

The purpose of this note is to describe the range of such
measure. In the case u(8) is finite and the measure u is non-
atomic, then a result due to A.A. Liapunov [ 4] says that the range
of p 1is compact and convex. In the case we consider, the range

remains convex as can be easily seen from the Liapunov theorem but

need not be closed. However, we have the following:

Theorem 1. Consider a non-atomic n-vector valued measure (S,2,p).
Then the range P = u(ZD of the measure K has the following prop-
erties: (i) P is convex, (ii) the closure P of P does not
contain a line, (iii) each compact extreme face of P is contained
in P.

Let us recall that a subset A of a convex set B is an
extreme face of B if for any three points pl,pe,p5 € B such that
Py = kp2+(l-h)p5, where 0 < A< 1 we have the implication: if
p, ¢ A then p2’P5 € A, Since B itself is an extreme face of B,

thus in the case P is compact, the part (iii) of Theorem 1 implies



that P = fﬁ thus compactness of the range, Hence Theorem 1 con-
tains as a special case Liapunov's theorem.

A proof of Theorem 1 is given in section 2 and is preceded
by a Lemma given in section 1. Let us point out here that a convex
closed subset of Rn, which does not contain a line has not empty
profile, that is, the set of extreme points. In particulaf from (ii)
it follows that there exist compact extreme faces of P. 1In section
5 we discuss in more details some geometrical properties of P im-
plied by (ii) and (iii).

1. Denote by |u| the total variations of u. (If E e X
then |u|(E) = sup ﬂlp(Ei)H, where supremum is taken over all decom-
position of E into disjoint subsets {Ei} C Z.) The total varia-
tion |u|(E) of E is finite if and only if p(E) is finite. De-
note by Z% the subset of 2, on which p is finite. For any two
E,F C L deote by f(E,F) = |u|(E AF), where E AF is the sym-
metric difference, The function p 1is a metric function on Z%,
provided the equality E = F is meant modulo |u|, that is, E = F
if and only if |u|(E AF) = 0. The metric spaée. (ZO, 0 is com-
plete (ef. P. Halmos [2 ], p. 169) and the map s Z% -RY is con-
tinuous. Consider the inverse map u_l: pcC R® —9225. ‘In[ 6],
the author noticed that (in the case P compact) u'l(e) is
a singelton ({E} if and only if e is an extreme point of P,

The lemma which follows generalizes this by showing that if
e 1is close to an extreme point then the diameter of u'l(e) is

small,



Lemma. Let (S,2,n) be as in Theorem 1. Let e be an extreme
point of P = p(2). Then for each € >0 there is & >0 such

that if Hu(Ei)-e” <38 i=1,2 then oE},E,) <E.

Proof: There is a basis in R® such that e is the lexicographi-

cal maximum of P with respect to this basis (ef. [5 ]). Without
any loss of generality we may assume this basis to be the natural

basis of R. Thus if (el,...,en) are coordinates of e then we

have
(1.1) e, = max {xll(xl,...,xn) € D)
(1.2) e, = max {xilel,...,ei_l,xi,xi+l,...,xn) € T}

Since P 1is convex and closed the maximum in (1.2) is con-
tinuous function of €1se0s€5 15 therefore for each k £ n and any

Y >0 there are Yik""’yk 1% positive such that the following
Sl ]

implication holds:

(L3k) if (xy,...,%x)) € P and [x;-e;] <7y 1=1,..0,k-1 then
Xk < ek+Y.

Suppose W = (ul,...,un), w; are real valued countably

additive functions defined on 2 . For each i = 1,2,...,n |u.|(E)
o i

is the totél variation of ui(E) and is defined in the same way as




|kl . It is easy to check the inequality |u|(E) = Zﬁluil(E) for
each E € Z%o Thus we will prove the lemma if we show that for each

€ >0 there exists & >0 such that for any two E,,E, € Zo the

inequalities

(1.4) |ui(EJ.)-ei| <8 i=1,2,00e,n, j = 1,2
imply

(1.5) Iuil(El AE)) <€ 1i=1,2,000,m

Suppose that the above implication does not hold for some
i and let i=k be the smallest one. Hence, for each € >0 there

is 60> 0 such that for each B

1A

&, the inequalities (1.4) implies

(1.5) if 1 = 1,000,k-1 while for i=k there is € >0 such that

WA

for each & £ 8  there exists Ej(S) € Z% such that (1l.4) holds

but

(1.6) |y (B(®) 5Ex(8) 2 €,

Set v, in (1l.3k) to be smaller than eo/h, choose € <
(1/2) min[yik,so/h} and 8 <E.
From (1.6) we conclude that there is G € Z% such that

either GCE\\E, or GCE;\E, and (e ze_ /2. To fix



the idea suppose G CIEl\E2 and uk(G) z 80/2° Then E, N G = g,
b (Ey U G) = w (B4 (G) =
by (l.4) and (1.5) lui(E2 U G)-ei‘ s ‘ui(Ez)-ei! + ‘ui(G)l £5 4+

|__“i| (E, A El) < B4 = 28

- ) i
e, -0 + 80/_ > e+ 60/4 > ek+8. While

A

Yik° Thus we have a contradiction with
1.3k) applied to x = p(E, U G) € P. Hence (1.4) implies (1.5) if
2

& 1is small enough and the proof of the Lemma is completed.

Corollary. If e € P is an extreme point of P then there is

E € Z% such that W(E) = e« Thus e € P

Proof: Since e € P there is a sequence [Ei] CIZ% such” that

u(Ei) - e. By the Lemma it follows that this sequence (E;} is
a Cauchy sequence in the metric space (Zb,p) and since the latter
is complete {Ei} has the limit E € Zb' By continuity of u it
follows that W(E) = e, what was to be provedo.

2. Proof of Theorem 1. If E €2 then. Zg = (FNE|F €2}
is a g-field of subsets of E and U restricted to Zi is totally
finite and of course non-atomic. Thus Liapunov?!s theorem can be
applied and u(ZE) is concluded to be convex and of course contained
in. P. Let now El’E2 € Zo' Then E = El U E2 € Zg also and
u(Ei) € u(2g) C P. But u(Zé) is convex and therefore ku(El) +
(l-k)p(EQ) € P for each 0 <A < 1, which proves convexity of P.

To prove part (ii) let us suppose the contrarys that is,

suppose there is a € Rn, Ha” = 1 such that

(2.1) Aa € P  for each A real.




(Note that if »? contains a line then the parallel line through
any point of P 1is also contained in P. Since 0 € P thus the
contradiction of (ii) implies (2.1)).

In this case we can choose a sequence {Ei} i=

bf disjoint sets from 2. such that

(2.2) p(Ei) = (sgn i)a + &5
where
(2.3) Je )l = 271

This clearly will contradict the additivity of the measure
i, since the measure of UEi could not be uniquely determined.
i

By (2.1) it is clear that E, can be chosen. To use in-
duction argument assume that El’E-l"'°’En’E-n are chosen and (2.2)

and (2.3) hold for i =% 1,.0e,tn. Put E = E. manifestly

U
|if=1*
E € Zb’ thus u(Zﬁ) is compact. It is also easy to.see that

P = p(Zé) + p(Zé\E) and therefore

(2.4) B = () + w(lng)-
From (2.1) and (2.4) it follows that Aa € p(ZS\E) for

each real A. 1Indeed, let us fix A. For each integer k there

is f, € u(Zﬁ) and g € u(Zé\E) such that f, +g_ = kha. But




u(Zﬁ) is compact therefore fk/k —»0 as k oo Hence g /k —>\a
as . k » «, Since “(Z%\E) is convex and contains O thus gk/k €
H(Z%\E) if g, does and the closedness of the latter set gives us
the desired conclusion. Therefore we may choose En+l C S\E such’
that (2.2) and (2.3) are satisfied also for i = n+l. This completes
the proof of (ii).

To prove (iii) suppose B is a compact extreme face of
P. In particular B is compact convex subset of R" and each ex-
treme point of B is an extreme point of P. Thus the set B of
all extreme points of B, by the Corollary, is contained in P.
Since P is convex, therefore the convex hull of B is also con-
tained in P. But the convex hull of B is B. Hence BC P and

the proof of (iii) is completed.

Remark. In proving (ii) we made use of Liapunov theofem for finite
measure but only of convexity part. Part (iii) of Theorem 1 or
rather the Corollary of Section 1 in the bounded case were obtained
by Blackwell (cf. [ ], Theorem k)

3. Denote by C the asymptotic cone of P¢ that is
(3.1) C={ceRYphc €¢P for each p €T and A z 0}

Since P does not contain a line, is closed and convex

therefore C 1is a proper closed convex cone. Consider the polar

c® of C; that is




(3+2) ¢° ={d eR" <d,c >50 for each c € C)

Suppose 4 € Rn is such that sup < d,p > < += then
pevpP
d € ¢°. Indeed if d does not belong to CO then there is c € C

such that < d,c >>0 and this together with (3.1) implies that
sup < d,p > = +0. It is easy to see that if C is proper, closed
pepr

convex cone then int ¢° is not empty, for each d € int c® there

exists max_ < d,p > and the set B(d) = {p € | <d,p > =max <d,p >

peP peP
is compact (ef. for example [ 3]). On the other hand if the max < d,p >
peP

exists for a d from the boundary of c® then the corresponding
set B(d) is unbounded. In fact, one can show that the asymptotic
cone C(d) of B(d) is givenby (c ecC|<d,e >=0)}. Manifestly
B(d) is an extreme face of T for each 4 € c°.

In particular, it follows from the above discussion that
(ii) implies the existence of a compact extreme face of P.

With each convex cone C in R° we can associate an order
in R” by defining: x Sy iff y-x € C. Let A CR", a point
a € A is called a minimal point of A if for each b € A +the in-
equality b £ a 1implies the equality a = b.

| We can prove now a theorem which describes the range of

8 vector-valued measure from some other point of view.

Theorem 2. Let (S,X,n) be like in Theorem 1. Then the range

P = u(Z) 1is convex, the asymptotic cone C of P is proper, convex

and closed and for each p € P there is p, ¢ P, p, S p, that is



P-py € C. In particular, each minimal point of T belongs to P.

Proofs Consider the set

Q =P N ({p}-C). We claim it is nonempty (since p € F), convex and
compact. It clearly is closed and convex. If it were unbounded
there would exist a £ 0 such that {p+hal|A 2 0} C Q. That would
mean that ¢ € C (cf. (3.1)) as well as ¢ € -C, which is impossible

since € N (-@) = {0}. Take now any d € int C° and define

Q =f{aeq <aqd>=max<aq,d>].
q €Q
For each p, € Ql we have the inequality Py = D.
»0n the other hand let B be the smallest closed extreme
face of P containing py,. For each b € B there is € >0 such
that p = p, + Mb-p,) € B for A € [-€,+«€]. In fact, if I =

{p A(b-p,)|-€ = A <0} were disjoint with B +then there would exist

1A

a hyperplane T separating I and B. But in that case T N B

would be an extreme face of P containing p, but not containing

b, hence smaller than B. Suppose now B is unbounded, then there
exist ¢ € C such that p,+hc € B for A = 0, thus there exist

€ >0 such p,-€c =p €B. Since 4 € int ¢®, therefore < d,c > < O.
Hence < d,pl >=<d,p, >-€ <d,c >><4d,p,> The latter is im-
possible because Rz £ p, <p and thus Py € Qe So B 1s compact
extreme face of P and as such by (iii) is contained in P. Hence

P, € P what was to be provede If p is a minimal point of P then
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Py = D, therefore p € P.

We will finish with a few examples.

Example 1. Let S =1(0,1], Y. the Lebesgue measurable subsets of

[0,1] and u = (ul,ue) defined by

W(E) = ([(1-20)ar/v(17), fat/x(17))

The range P in this case is [(xl,x2)| lx | <x,

X, = o if X5 = 0}. Therefore only (0,0) belongs to P from

if Xy > 0,
the boundary of P and P is not closed. The.cone C = P in this
case and (0,0) 1is the unique minimal point of . P.

Example 2. Let S,Z be as above.
K(E) = (fESign(l-EW)dT/T(l-T), fEdT/T(l-T))

In this case P is closed and equal [(xl,xg)l |xl| < x,}

Example 3. Again S,Z are as in Example 1

1/2 1/2

w(e) = (Jg(1-enar/v73(1n M, [ar/e(1))

Now P is contained in [(xl,x2)|x2 z 0, ]xl] £ q} and is un-

bounded, therefore C = {(xl,xg)lxl =0, x, 20} and c® =



11

[(xl,xe)lx2 < 0}. On the boundary of C° we have two different direc-

tions d, = (-1,0) and d, = (1,0)

sup < d,,p > = sup fE(1-2'c)d'r/Tl/2(1_'r)l/2 =
pEP E C [0,1]

- f;/Q (1-27)ar/72(1) Y2 < 4 )

Since f;/ed'r/’r(l-'r) = o, thus B(d2) is empty and so is B(d for

V)
the same reason.

Therefore we can conclude in this case that P 1is closed,
since each point of the boundary of VP belongs to a B(d) for
d € intl C°>, thus belongs to a compact extreme face of P. Hence

jsin P and P = D.

In general we have the following

Theorem 3. Let (S,Y,u) and P be like in Theorem 1. If the set
D ={dld # 0 and the max <d,p > exists}] 1is open, then P is

peP
closed.

Proof: It follows from the discussion of this section that int Co C

DC C°. Thus if D is open then D = int C°. On the other hand, like
in example 3, if p_ ¢ OP then there is d € D such that < P ,d > =

max < p,d > Hence p_ € B(d). But d € int ¢° thus B(d) is com-
peP

pact and by (iii) of Theorem 1 B(d) C P and consequently p, € P. Thus

P = P what was to be proved.
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